
Package: receptiviti (via r-universe)
September 15, 2024

Type Package

Title Text Analysis Through the 'Receptiviti' API

Version 0.1.9

Description Send text to the <https://www.receptiviti.com> API to be
scored by all available frameworks.

License MIT + file LICENSE

Imports curl, jsonlite, digest, progressr, stringi

Suggests testthat (>= 3.0.0), knitr, rmarkdown, future, arrow (>=
9.0.0), dplyr, future.apply

Config/testthat/edition 3

RoxygenNote 7.3.2

Roxygen list(old_usage = TRUE)

URL https://receptiviti.github.io/receptiviti-r/,

https://github.com/Receptiviti/receptiviti-r

BugReports https://github.com/Receptiviti/receptiviti-r/issues

Encoding UTF-8

Repository https://receptiviti.r-universe.dev

RemoteUrl https://github.com/receptiviti/receptiviti-r

RemoteRef HEAD

RemoteSha d92bb4f9f391ecf55906982b9e2dd87191306c9f

Contents
receptiviti . 2
receptiviti_norming . 6

Index 8

1

https://www.receptiviti.com
https://receptiviti.github.io/receptiviti-r/
https://github.com/Receptiviti/receptiviti-r
https://github.com/Receptiviti/receptiviti-r/issues

2 receptiviti

receptiviti Receptiviti API

Description

The main function to access the Receptiviti API.

Usage

receptiviti(text = NULL, output = NULL, id = NULL, text_column = NULL,
id_column = NULL, files = NULL, dir = NULL, file_type = "txt",
encoding = NULL, return_text = FALSE,
api_args = getOption("receptiviti.api_args", list()),
frameworks = getOption("receptiviti.frameworks", "all"),
framework_prefix = TRUE, as_list = FALSE, bundle_size = 1000,
bundle_byte_limit = 7500000, collapse_lines = FALSE, retry_limit = 50,
clear_cache = FALSE, clear_scratch_cache = TRUE, request_cache = TRUE,
cores = detectCores() - 1, use_future = FALSE, in_memory = TRUE,
verbose = FALSE, overwrite = FALSE, compress = FALSE,
make_request = TRUE, text_as_paths = FALSE,
cache = Sys.getenv("RECEPTIVITI_CACHE"), cache_overwrite = FALSE,
cache_format = Sys.getenv("RECEPTIVITI_CACHE_FORMAT", "parquet"),
key = Sys.getenv("RECEPTIVITI_KEY"),
secret = Sys.getenv("RECEPTIVITI_SECRET"),
url = Sys.getenv("RECEPTIVITI_URL"),
version = Sys.getenv("RECEPTIVITI_VERSION"),
endpoint = Sys.getenv("RECEPTIVITI_ENDPOINT"))

receptiviti_status(url = Sys.getenv("RECEPTIVITI_URL"),
key = Sys.getenv("RECEPTIVITI_KEY"),
secret = Sys.getenv("RECEPTIVITI_SECRET"), verbose = TRUE,
include_headers = FALSE)

Arguments

text A character vector with text to be processed, path to a directory containing files,
or a vector of file paths. If a single path to a directory, each file is collapsed to a
single text. If a path to a file or files, each line or row is treated as a separate text,
unless collapse_lines is TRUE (in which case, files will be read in as part of
bundles at processing time, as is always the case when a directory). Use files
to more reliably enter files, or dir to more reliably specify a directory.

output Path to a .csv file to write results to. If this already exists, set overwrite to
TRUE to overwrite it.

id Vector of unique IDs the same length as text, to be included in the results.
text_column, id_column

Column name of text/id, if text is a matrix-like object, or a path to a csv file.

https://www.receptiviti.com

receptiviti 3

files A list of file paths, as alternate entry to text.

dir A directory to search for files in, as alternate entry to text.

file_type File extension to search for, if text is the path to a directory containing files to
be read in.

encoding Encoding of file(s) to be read in. If not specified, this will be detected, which can
fail, resulting in mis-encoded characters; for best (and fasted) results, specify
encoding.

return_text Logical; if TRUE, text is included as the first column of the result.

api_args A list of additional arguments to pass to the API (e.g., list(sallee_mode =
"sparse")). Defaults to the receptiviti.api_args option.

frameworks A vector of frameworks to include results from. Texts are always scored with
all available framework – this just specifies what to return. Defaults to all,
to return all scored frameworks. Can be set by the receptiviti.frameworks
option (e.g., options(receptiviti.frameworks = c("liwc", "sallee"))).

framework_prefix

Logical; if FALSE, will remove the framework prefix from column names, which
may result in duplicates. If this is not specified, and 1 framework is selected, or
as_list is TRUE, will default to remove prefixes.

as_list Logical; if TRUE, returns a list with frameworks in separate entries.

bundle_size Number of texts to include in each request; between 1 and 1,000.
bundle_byte_limit

Memory limit (in bytes) of each bundle, under 1e7 (10 MB, which is the API’s
limit). May need to be lower than the API’s limit, depending on the system’s
requesting library.

collapse_lines Logical; if TRUE, and text contains paths to files, each file is treated as a single
text.

retry_limit Maximum number of times each request can be retried after hitting a rate limit.

clear_cache Logical; if TRUE, will clear any existing files in the cache. Use cache_overwrite
if you want fresh results without clearing or disabling the cache. Use cache =
FALSE to disable the cache.

clear_scratch_cache

Logical; if FALSE, will preserve the bundles written when in_memory is TRUE,
after the request has been made.

request_cache Logical; if FALSE, will always make a fresh request, rather than using the re-
sponse from a previous identical request.

cores Number of CPU cores to split bundles across, if there are multiple bundles. See
the Parallelization section.

use_future Logical; if TRUE, uses a future back-end to process bundles, in which case, par-
allelization can be controlled with the plan function (e.g., plan("multisession")
to use multiple cores); this is required to see progress bars when using multiple
cores. See the Parallelization section.

in_memory Logical; if FALSE, will write bundles to temporary files, and only load them as
they are being requested.

4 receptiviti

verbose Logical; if TRUE, will show status messages.

overwrite Logical; if TRUE, will overwrite an existing output file.

compress Logical; if TRUE, will save as an xz-compressed file.

make_request Logical; if FALSE, a request is not made. This could be useful if you want to be
sure and load from one of the caches, but aren’t sure that all results exist there;
it will error out if it encounters texts it has no other source for.

text_as_paths Logical; if TRUE, ensures text is treated as a vector of file paths. Otherwise,
this will be determined if there are no NAs in text and every entry is under 500
characters long.

cache Path to a directory in which to save unique results for reuse; defaults to Sys.getenv("RECEPTIVITI_CACHE").
See the Cache section for details.

cache_overwrite

Logical; if TRUE, will write results to the cache without reading from it. This
could be used if you want fresh results to be cached without clearing the cache.

cache_format Format of the cache database; see FileFormat. Defaults to Sys.getenv("RECEPTIVITI_CACHE_FORMAT").

key API Key; defaults to Sys.getenv("RECEPTIVITI_KEY").

secret API Secret; defaults to Sys.getenv("RECEPTIVITI_SECRET").

url API URL; defaults to Sys.getenv("RECEPTIVITI_URL"), which defaults to
"https://api.receptiviti.com/".

version API version; defaults to Sys.getenv("RECEPTIVITI_VERSION"), which de-
faults to "v1".

endpoint API endpoint (path name after the version); defaults to Sys.getenv("RECEPTIVITI_ENDPOINT"),
which defaults to "framework".

include_headers

Logical; if TRUE, receptiviti_status’s verbose message will include the HTTP
headers.

Value

A data.frame with columns for text (if return_text is TRUE; the originally entered text), id (if
one was provided), text_hash (the MD5 hash of the text), a column each for relevant entries in
api_args, and scores from each included framework (e.g., summary.word_count and liwc.i). If
as_list is TRUE, returns a list with a named entry containing such a data.frame for each frame-
work.

Cache

If the cache argument is specified, results for unique texts are saved in an Arrow database in the
cache location (Sys.getenv("RECEPTIVITI_CACHE")), and are retrieved with subsequent requests.
This ensures that the exact same texts are not re-sent to the API. This does, however, add some
processing time and disc space usage.

If cache is TRUE, a default directory (receptiviti_cache) will be looked for in the system’s tem-
porary directory (which is usually the parent of tempdir()). If this does not exist, you will be asked
if it should be created.

https://arrow.apache.org

receptiviti 5

The primary cache is checked when each bundle is processed, and existing results are loaded at
that time. When processing many bundles in parallel, and many results have been cached, this can
cause the system to freeze and potentially crash. To avoid this, limit the number of cores, or disable
parallel processing.

The cache_format arguments (or the RECEPTIVITI_CACHE_FORMAT environment variable) can be
used to adjust the format of the cache.

You can use the cache independently with open_database(Sys.getenv("RECEPTIVITI_CACHE")).

You can also set the clear_cache argument to TRUE to clear the cache before it is used again,
which may be useful if the cache has gotten big, or you know new results will be returned. Even if
a cached result exists, it will be reprocessed if it does not have all of the variables of new results,
but this depends on there being at least 1 uncached result. If, for instance, you add a framework to
your account and want to reprocess a previously processed set of texts, you would need to first clear
the cache.

Either way, duplicated texts within the same call will only be sent once.

The request_cache argument controls a more temporary cache of each bundle request. This is
cleared when the R session ends. You might want to set this to FALSE if a new framework becomes
available on your account and you want to process a set of text you already processed in the current
R session without restarting.

Another temporary cache is made when in_memory is FALSE, which is the default when processing
in parallel (when cores is over 1 or use_future is TRUE). This contains a file for each unique
bundle, which is read in as needed by the parallel workers.

Parallelization

texts are split into bundles based on the bundle_size argument. Each bundle represents a single
request to the API, which is why they are limited to 1000 texts and a total size of 10 MB. When
there is more than one bundle and either cores is greater than 1 or use_future is TRUE (and you’ve
externally specified a plan), bundles are processed by multiple cores.

If you have texts spread across multiple files, they can be most efficiently processed in parallel if
each file contains a single text (potentially collapsed from multiple lines). If files contain multiple
texts (i.e., collapse_lines = FALSE), then texts need to be read in before bundling in order to
ensure bundles are under the length limit.

Whether processing in serial or parallel, progress bars can be specified externally with handlers;
see examples.

Examples

Not run:

check that the API is available, and your credentials work
receptiviti_status()

score a single text
single <- receptiviti("a text to score")

score multiple texts, and write results to a file
multi <- receptiviti(c("first text to score", "second text"), "filename.csv")

6 receptiviti_norming

score many texts in separate files
defaults to look for .txt files
file_results <- receptiviti(dir = "./path/to/txt_folder")

could be .csv
file_results <- receptiviti(

dir = "./path/to/csv_folder",
text_column = "text", file_type = "csv"

)

score many texts from a file, with a progress bar
set up cores and progress bar (only necessary if you want the progress bar)
future::plan("multisession")
progressr::handlers(global = TRUE)
progressr::handlers("progress")

make request
results <- receptiviti(

"./path/to/largefile.csv",
text_column = "text", use_future = TRUE

)

End(Not run)

receptiviti_norming View or Establish Custom Norming Contexts

Description

View or Establish Custom Norming Contexts

Usage

receptiviti_norming(name = NULL, text = NULL, options = list(),
id = NULL, text_column = NULL, id_column = NULL, files = NULL,
dir = NULL, file_type = "txt", collapse_lines = FALSE,
encoding = NULL, bundle_size = 1000, bundle_byte_limit = 7500000,
retry_limit = 50, clear_scratch_cache = TRUE, cores = detectCores() -
1, use_future = FALSE, in_memory = TRUE,
url = Sys.getenv("RECEPTIVITI_URL"), key = Sys.getenv("RECEPTIVITI_KEY"),
secret = Sys.getenv("RECEPTIVITI_SECRET"), verbose = TRUE)

Arguments

name Name of a new norming context, to be established from the provided text. Not
providing a name will list the previously created contexts.

text Text to be processed and used as the custom norming context. Not providing
text will return the status of the named norming context.

receptiviti_norming 7

options Options to set for the norming context (e.g., list(word_count_filter = 350,
punctuation_filter = .25)).

id, text_column, id_column, files, dir, file_type, collapse_lines,
encoding

Additional arguments used to handle text; same as those in receptiviti.
bundle_size, bundle_byte_limit, retry_limit, clear_scratch_cache,
cores, use_future, in_memory

Additional arguments used to manage the requests; same as those in receptiviti.

key, secret, url Request arguments; same as those in receptiviti.

verbose Logical; if TRUE, will show status messages.

Value

If name is not specified, a data.frame containing the statuses of each available custom norming
context. If text is not specified, the status of the named context in a list. If texts are provided, a
list:

• initial_status: Initial status of the context.

• first_pass: Response after texts are sent the first time, or NULL if the initial status is pass_two.

• second_pass: Response after texts are sent the second time.

Examples

Not run:
get status of all existing custom norming contexts
contexts <- receptiviti_norming()

create or get the status of a single custom norming context
status <- receptiviti_norming("new_context")

establish a new custom norming context
full_status <- receptiviti_norming("new_context", c(

"a text to set the norm",
"another text part of the new context"

))

End(Not run)

Index

FileFormat, 4

handlers, 5

plan, 3, 5

receptiviti, 2, 7
receptiviti_norming, 6
receptiviti_status (receptiviti), 2

8

	receptiviti
	receptiviti_norming
	Index

